JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD II B.TECH II SEM-REGULAR/SUPPLEMENTARY EXAMINATIONS MAY – 2010 MATHEMATICS FOR AEROSPACE ENGINEERS

Aeronautical Engineering

Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

(a) A random variable X has the following distribution

X=x	0	1	2	3	4	5	6	7	8
P(X=x)	a	3a	5a	7a	9a	11a	13a	15a	17a

Determine a and find P (x<3), P(X<3) < P(0< x < 5). and the smallest value of x for which $P(x \le x) > 0.5$

- (b) If X is a normal variate show that E (X) = μ , and Var (X) = σ^2 [8+8]
- (a) If $w=u+i \theta = z^3$, prove that the curves $u=c_1$, and $v=c_2$ where C_1 and C_2 are constants, cut eachother orthogonally.
 - (b) If $u=x^2-y^2$, $\nu=-\frac{y}{x^2+y^2}$, then show that both u and v are harmonic but u+iv is not analytic.
- (a) Evaluate the equation $\int_{c} \frac{(z^{2}-z-1)}{z(z-1)^{2}} dz$ with $c: |z-\frac{1}{2}| = 1$ using Cauchy's integral formula.
 - (b) Using Cauchy's integral formula, evaluate $\int_c \frac{e^{2z}}{(z^2+\pi^2)^3} dz$ where c is |z|=4
 - (c) Evaluate $\int_{(0,0)}^{(1,1)} (3x^2 + 4XY + ix^2) dz$ along $y = x^2$ [5+6+5]
- (a) Two dice, one green and the other red, are thrown. Let A be the event that the sum of the points on the faces is odd and B the event of at least one ace (number 1 on the face of die). Find the probabilities of the events
 - i. A U $(A^c \cap B)$
 - ii. (A|B)
 - iii. (Ac|Bc)
 - iv. A $U(A^c U B)$
 - (b) A vendor has 25 gas filled balloons tied to srings. 10 balloons are yellow, 8 are red and 7 are green. Find the probability that two balloons selected at random by a boy are both yellow. [8+8]
- (a) Find the expansion of by Taylor's series about z=1.
 - (b) Expand f(z) = $\frac{z}{(z-1)(2-z)}$ in a Laurent's series for 1<|z|<2
 - (c) Expand $f(z) = z e^{2z}$ in a Taylor's series about z=-1. [5+6+5]
- (a) Show that the transformation w = z + 1/z maps the circle r = c into an ellipse. Discuss the case when c=1. Draw rough sketches in each case.

- (b) Show that w = (i/4)[(z+2)/(z+1)] transforms the real axis in z -plane to a circle in w -plane. Find the pre-image of the center of such circle. [8+8]
- 7. (a) Evaluate $\int_0^\infty \frac{x^{m-1}}{(a+bx)^{m+n}} dx$ using β and Γ s.
 - (b) Prove that $\int_0^1 (1-x^n)^{\frac{1}{n}} dx = \frac{\left[\Gamma\left(\frac{1}{n}\right)\right]^2}{2n\Gamma\left(\frac{2}{n}\right)}$
 - (c) Show that $\beta(m,n) = 2 \int_0^{\frac{\pi}{2}} \sin^{2m-1}(\theta) \cos^{2n-1}(\theta) d\theta$ Deduce that $\int_0^{\frac{\pi}{2}} \sin^n(\theta) d\theta = \int_0^{\frac{\pi}{2}} \cos^n(\theta) d\theta = \frac{\Gamma(\frac{n+1}{2})\Gamma(\frac{1}{2})}{2\Gamma^{\frac{n+2}{2}}}$ [5+5+6]
- 8. Define covariant tensor of order one. Give an example. A covariant tensor has components 2x z, x^2y , yz in rectangular coordinates. Find its covariant components spherical coordinates. [16]
